LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc., DEGREE EXAMINATION – MATHEMATICS FIRST SEMESTER – NOVEMBER 2013 MT 1501 – GRAPHS, DIFF. EQU., MATRICES & FOURIER SERIES

Date : 14/11/2013

Dept. No.

Max.: 100 Marks

Time : 1:00 - 4:00

<u> PART – A</u>

Answer ALL questions:

- 1. Let $R \to R$ be defined by $f(x) = x^2$. Find the range of the function.
- 2. Find the slope of the line x = -2y 7.
- 3. Write the normal equation of y = a + bx.
- 4. Reduce $y = ae^{bx}$ to normal form.
- 5. Define difference equation with example.
- 6. Solve: $y_{x+2} 8y_{x+1} + 15y_x = 0$.
- 7. Show that the matrix $\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ is orthogonal.
- 8. Find the eigen values of the matrix $\begin{bmatrix} a & h & g \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$.
- 9. Write down the Fourier series for the function f(x) defined in the interval $0 < x < 2\pi$.
- 10. Define odd and even functions with examples.

<u> PART – B</u>

Answer any FIVE questions:

11. A steel plant produces x tons of steel per week at a total cost of Rs. $(\frac{1}{3}x^3 - 5x^2 + \frac{1}{3}x^3)$

99x + 35). Find the output level at which the marginal cost attains its minimum.

- 12. Let the cost function of a firm be given by $C(x) = 300x 10x^2 + \frac{1}{3}x^3$ for x units. Find x at which the average cost is minimum.
- Using method of least squqres, fit a straight line for the following data.
 Estimate y when x = 25.

x	0	5	10	15	20
У	7	11	16	20	26

 $(5 \times 8 = 40)$

(10 X 2 = 20)

14. Solve: $y_{x+2} - 6y_{x+1} + 8y_x = 4^x$. 15. Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

16. Find the eigen vectors of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.

17. Obtain the Fourier expansion of $f(x) = \frac{1}{2}(\pi - x), (0 < x < 2\pi)$. 18. Obtain the half range cosine series for the function $f(x) = x, (0 < x < \pi)$.

PART-C

Answer any **TWO** questions:

19. a. Fit a curve of the form $y = a + bx + cx^2$ for the following table.

х	0	1	2	3	4			
У	1	1.8	1.3	2.5	6.3			

b. The cost function for producing x units of a product is $C(x) = x^3 - 12x^2 + 48x + 11$ (in rupees) and the revenue function is $R = 83x - 4x^2 - 21$. Find the output for which the profit is maximum. Find also the maximum profit.

20. a. Solve the difference equation: $(x + 2) - 4u(x) = 9x^2$.

b. Solve the equation $y_{n+2} - 16y_n = \cos \frac{1}{2}n$.

21. Determine the Fourier expansion for $f(x) = \begin{cases} -\pi & in(0,\pi) \\ x - \pi & in(\pi,2\pi) \end{cases}$

and show that $\sum_{r=1}^{\infty} \frac{1}{(2r+1)^2} = \frac{\pi^2}{8}$.

22. Diagonalise the matrix
$$A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$
.

\$\$\$\$\$\$

(2 X 20 = 40)