LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
B.Sc., DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2013
MT 1501 - GRAPHS, DIFF. EQU., MATRICES \& FOURIER SERIES

Date : 14/11/2013
Dept. No. \square Max. : 100 Marks
Time : 1:00-4:00

PART - A

Answer ALL questions:
(10 X $2=20$)

1. Let $R \rightarrow R$ be defined by $f(x)=x^{2}$. Find the range of the function.
2. Find the slope of the line $x=-2 y-7$.
3. Write the normal equation of $y=a+b x$.
4. Reduce $y=a e^{b x}$ to normal form.
5. Define difference equation with example.
6. Solve: $y_{x+2}-8 y_{x+1}+15 y_{x}=0$.
7. Show that the matrix $\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$ is orthogonal.
8. Find the eigen values of the matrix $\left[\begin{array}{lll}a & h & g \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right]$.
9. Write down the Fourier series for the function $f(x)$ defined in the interval $0<x<2 \pi$.
10. Define odd and even functions with examples.

PART - B

Answer any FIVE questions:
11. A steel plant produces x tons of steel per week at a total cost of Rs. $\left(\frac{1}{3} x^{3}-5 x^{2}+\right.$ $99 x+35)$. Find the output level at which the marginal cost attains its minimum.
12. Let the cost function of a firm be given by $C(x)=300 x-10 x^{2}+\frac{1}{3} x^{3}$ for x units. Find x at which the average cost is minimum.
13. Using method of least squqres, fit a straight line for the following data.

Estimate y when $\mathrm{x}=25$.

x	0	5	10	15	20
y	7	11	16	20	26

14. Solve: $y_{x+2}-6 y_{x+1}+8 y_{x}=4^{x}$.
15. Verify Cayley Hamilton theorem for $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$
16. Find the eigen vectors of the matrix $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$.
17. Obtain the Fourier expansion of $f(x)=\frac{1}{2}(\pi-x),(0<x<2 \pi)$.
18. Obtain the half range cosine series for the function $f(x)=x,(0<x<\pi)$.

PART-C

Answer any TWO questions:
$(2 \times 20=40)$
19. a. Fit a curve of the form $y=a+b x+c x^{2}$ for the following table.

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

b. The cost function for producing x units of a product is $C(x)=x^{3}-12 x^{2}+48 x+$ 11 (in rupees) and the revenue function is $R=83 x-4 x^{2}-21$. Find the output for which the profit is maximum. Find also the maximum profit.
20. a. Solve the difference equation: $(x+2)-4 u(x)=9 x^{2}$.
b. Solve the equation $y_{n+2}-16 y_{n}=\cos \frac{1}{2} n$.
21. Determine the Fourier expansion for $f(x)=\left\{\begin{array}{cc}-\pi & \text { in }(0, \pi) \\ x-\pi & \text { in }(\pi, 2 \pi)\end{array}\right.$ and show that $\sum_{r=1}^{\infty} \frac{1}{(2 r+1)^{2}}=\frac{\pi^{2}}{8}$.
22. Diagonalise the matrix $A=\left[\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$.

